
 

 210

Comparing the Simulated Power of Discrete Goodness-of-fit 
Tests for Small Sample Sizes 

Michael Steele1,*, Janet Chaseling2 and Cameron Hurst1 

1James Cook University, 2Griffith University 
*Corresponding author: Mike.Steele@jcu.edu.au 

Abstract 
Although a variety of goodness-of-fit test statistics are used by applied researchers, 

studies of their power have been limited. This paper investigates the simulated power of 
six goodness-of-fit test statistics for discrete data for small sample sizes. The null 
distribution is uniform and the simulated power of each of the test statistics is calculated 
for a number of alternative distributions including trend, triangular, flat/platykurtic type, 
sharp/leptokurtic type and bimodal. 
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Introduction 
The limited amount of published research into the power of discrete goodness-of-fit (GOF) test 

statistics suggest that for small sample sizes the discrete Kolmogorov-Smirnov (S), Cramér-von Mises 
(W2) and Anderson-Darling (A2) test statistics are more powerful than Pearson’s Chi-Square (χ2) for a 
uniform null against alternative trend type distributions (Choulakian et al., 1994; Pettitt and Stephens 
1977). Only a limited amount of research has been conducted into the powers of these, and other 
discrete GOF test statistics, for other alternative distributions (Steele and Chaseling, 2006a and 
2006b); From, 1994; Steele et al., 2005).  This paper investigates the powers of the six discrete GOF 
test statistics in Table 1 for a uniform null against several alternative distributions given in Table 2 for 
small sample sizes. The simulation methods used are discussed in Section 2, the results of the power 
studies are discussed for each alternative distribution in Section 3 and concluding recommendations 
based on power for small sample sizes are given in Section 4. 
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where k is the number of cells, N is the sample size, pi is the probability of an event occurring in cell i, 

Ei is the expected frequency in cell i, Oi is the observed frequency in cell i, ( )
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Table 2:  Distributions used in the power study 
Cell Probabilities 

Description 1 2 3 4 5 6 7 8 9 10 

Uniform 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Decreasing 0.32 0.13 0.10 0.08 0.07 0.07 0.06 0.06 0.05 0.05 

Step 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.15 0.15 

Triangular (∨) 0.17 0.13 0.10 0.07 0.03 0.03 0.07 0.10 0.13 0.17 

Platykurtic 0.04 0.11 0.11 0.12 0.12 0.12 0.12 0.11 0.11 0.04 

Leptokurtic 0.05 0.05 0.05 0.05 0.30 0.30 0.05 0.05 0.05 0.05 

Bimodal 0.05 0.11 0.17 0.11 0.06 0.06 0.11 0.17 0.11 0.05 

Simulations and Methods for the Power Study 
So that meaningful comparisons can be made with other published work this power study uses 

the same simulation techniques as Steele and Chaseling (2006). The sample sizes are 1, 2, 3 and 5 per 
cell under the uniform null distribution. The power of each test statistic is approximated from 10000 
simulated random samples from the null and alternative distributions. A problem arises in that the 
exact 5% significance level selected is rarely achieved as the simulated distribution of the test statistic 
is discrete. To attempt to overcome this problem, the powers are obtained from both sides of the 5% 
level and linearly interpolated. 

Power Study Results 

Decreasing Trend Alternative for Small Sample Sizes 
For very small sample sizes it is shown in Figure 1 that A2, W2 and S have greater powers than 

the two nominal test statistics χ2 and NS, and the circular test statistic U2. The order of the powers of 
these test statistics are similar to those obtained by Choulakian et al. (1994) for a decreasing 
alternative with 12 cells. It should be noted that these authors did not consider the NS test statistic. Of 
importance for the applied researcher is that for sample sizes of approximately 5 per cell under the null 
distribution the powers of all these test statistics, with the exception of NS, are quite close to 1 for this 
decreasing alternative distribution. 
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Figure 1:  The power of the six test statistics for a uniform null against a decreasing alternative when 

the same size is small 

Step-type Trend Alternative for Small Sample Sizes 
The results from Figure 2 show that the powers of the nominal type test statistics χ2 and NS are 

substantially smaller than the other four test statistics used in this power study. Importantly these 
differences still exist when the sample size is 5 per cell under the null distribution. Although this paper 
is concerned with smaller sample sizes it is worth noting that Steele and Chaseling (2006) showed that 
these differences were negligible for sample sizes of at least 10 per cell under the null distribution. 
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Figure 2:  The power of the six test statistics for a uniform null against a step type alternative when 

the same size is small 
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Triangular Alternative for Small Sample Sizes 
It is quite obvious in Figure 3 that the power of U2 is substantially greater than all other test 

statistics considered for this particular triangular alternative distribution. With the exception of the 
very small sample size of 1 per cell under the uniform null, the power of U2 is shown to be about 
double that of the next most powerful test statistic. Based on these results only U2 can be 
recommended as a suitably powerful test statistic for such situations. 

Platykurtic Alternative for Small Sample Sizes 
The powers of all 6 test statistics are shown in Figure 4 to be very poor for all sample sizes 

considered for this platykurtic alternative distribution and none of these test statistics can be 
recommended to applied researchers based on power for the smaller sample sizes. It is also interesting 
to note that the powers of A2, W2 and S have not noticeably differed from their starting value of 0.05 
for all sample sizes considered.  
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Figure 3:  The power of the six test statistics for a uniform null against a triangular alternative when 

the same size is small 
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Figure 4:  The power of the six test statistics for a uniform null against a platykurtic alternative when 

the same size is small 

Leptokurtic Alternative for Small Sample Sizes 
The χ2, U2 and, to a lesser extent, the NS test statistics are shown in Figure 5 to have greater 

power than the other three test statistics for the uniform null against this particular leptokurtic 
alternative distribution for all sample sizes. Importantly the powers of χ2 and U2 are approximately 
equal for all sample sizes and are quite high (approximately 0.50) for the very small sample size of 1 
per cell under the uniform null distribution. Also the powers of all six test statistics are quite close to 1 
when the sample sizes reach 5 per cell under the uniform null distribution. 
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Figure 5:  The power of the six test statistics for a uniform null against a leptokurtic alternative when 

the same size is small 
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Bimodal Alternative for Small Sample Sizes 
In general it is shown in Figure 6 that the powers of all six test statistics are quite poor for this 

bimodal alternative distribution with the exception of the two nominal test statistics χ2 and NS. The 
four other test statistics are shown to have power not substantially changing from the initial power 
value of 0.05. Clearly none of the six test statistics can be recommended for small sample sizes for this 
alternative distribution. 

 

Conclusions and Recommendations 
As is common in similar power studies it is difficult to recommend one particular goodness-of-

fit test statistic as being overall more powerful than the other test statistics. This makes it difficult for 
non-statistical users of goodness-of-fit tests who will persevere with Pearson’s χ2 for simplicity. While 
further studies into the powers of goodness-of-fit tests for categorical data are needed for many other 
test statistics, null and alternative distributions some general recommendations can be made: 

i)  for trend type alternatives discussed in Sections 3.1 and 3.2 it is clear that the test statistics 
based on the cumulative sum of the differences between the observed and expected frequencies (A2, 
W2 and S) are the more powerful 

ii) for the specific non-trend alternatives discussed in this power study Pearson’s χ2 is as 
powerful as any other test statistic with the exception of the triangular alternative distribution where 
U2 was much more powerful. 
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Figure 6:  The power of the six test statistics for a uniform null against a bimodal alternative when 

the same size is small 
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