Laboratory simulation of the stresses within inclined stopes
Ting, Ching Hung, Sivakugan, Nagaratnam, and Shukla, Sanjay Kumar (2012) Laboratory simulation of the stresses within inclined stopes. Geotechnical Testing Journal, 35 (2). GTJ103693. pp. 280-294.
PDF (Published Version)
Restricted to Repository staff only |
Abstract
In the process of mining for earth resources, large underground voids called stopes are created that are later backfilled. For stability analysis of the backfilled stopes, it is necessary to understand the stress developments within the stope while the filling is in progress. Due to an arching effect, a substantial fraction of the fill weight is carried by the stope walls, depending on the physical characteristics of the walls. This paper describes the development of a laboratory model that simulates mine backfilling in an inclined stope and enables determination of the average vertical stress at any depth within the fill. The experimental results are validated against numerical models and stresses determined from an analytical expression. The effect of arching is the least when the stope is inclined at about 80 degrees to the horizontal, giving highest vertical stresses at any depth. This fact is not captured in both the mathematical and numerical models developed in the past and the ones discussed herein. The model tests show that the lateral earth pressure coefficient is closer to K-0 for vertical stopes and k(a) for inclined stopes. In the case of walls with dissimilar frictional characteristics, the analytical expression can still be used with an average value of the wall-fill friction angle.
Item ID: | 22591 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 0149-6115 |
Keywords: | arching, backfills, inclined stopes, mine fills, stresses |
Date Deposited: | 01 Aug 2012 09:33 |
FoR Codes: | 09 ENGINEERING > 0905 Civil Engineering > 090501 Civil Geotechnical Engineering @ 100% |
SEO Codes: | 87 CONSTRUCTION > 8702 Construction Design > 870201 Civil Construction Design @ 100% |
Downloads: |
Total: 3 |
More Statistics |