Astrophysics and Space Science Proceedings

Wayne Orchiston
Tsuko Nakamura Richard Strom Editors

Highlighting
 the History of
 Astronomy in the Asia-Pacific Region

Proceedings of the ICOA-6 Conference
(2) Springer

About the Authors

Stella Cottam was born in New York City (USA) in 1949, and has B.S. degrees in physics and medical technology from Fordham University and the University of Nevada respectively, an M.S. in library science from the University of Kentucky and a Master of Astronomy from the University of Western Sydney in Australia. She works as a microbiologist at the Veteren's Administration Hospital in Lexington, Kentucky (USA). Stella is currently studying part-time for a Ph.D. through the Centre for Astronomy at James Cook University. Her thesis topic is "Solar Eclipses and Transits of Venus, 1868-1882, and their Role in the Popularisation of Astronomy in the USA", and her supervisors are Wayne Orchiston and Richard Stephenson.

Steven Gullberg was born in Jamestown, New York (USA) in 1956, and has a B.S. from the State University of New York and a Master of Liberal Studies (Ancient Astronomy) from the University of Oklahoma. In 2009 he graduated with a Ph.D. from James Cook University with a thesis on "The Cosmology of Inca Huacas", supervised by "Kim" Malville and Wayne Orchiston. A former American Airlines pilot, Steven is currently involved in setting up a new national airline for Barbados. His astronomical interests focus mainly on Babylonian astronomy and Incan archaeoastronomy. A paper based on his thesis research (and co-authored by Kim Malville) was published in Astronomy and Cosmology in Folk Traditions and Cultural Heritage, Archaeologia Baltica, 10, and another paper appeared in The Journal of Cosmology, volume 9, in 2010.

Ihsan Hafez was born in Beirut (Lebanon) in 1968. He has B.Sc. and M.Sc. degrees from the American University in Beirut and Boston University respectively and a Master of Astronomy from the University of Western Sydney in Australia. He works as a Manager in the refrigeration industry in Beirut. Ihsan founded the Middle East's only science and astronomical magazine, Ilm Wa Alam, and also the observatory at the Beirut Arab University, where he teaches undergraduate astronomy part-time. His research interests lie primarily in Arabic astronomy, and he has just completed a Ph.D. through the Centre for
 Astronomy at James Cook University. His thesis topic was "Abdul-Rahman al-Şūf̄̄ and The Book of the Fixed Stars: A Journey of Rediscovery", and his supervisors were Richard Stephenson and Wayne Orchiston.
J. McKim ("Kim") Malville was born in San Francisco in 1934, and has a B.S. from Caltech and a Ph.D. from the University of Colorado. He has taught at the Universities of Michigan, Sao Paulo, and Colorado, where he was Chairman of the Department of Astro-Geophysics. He is currently Emeritus Professor of Astrophysical and Planetary Sciences, University of Colorado, an Adjunct Professor in the Centre for Astronomy at James Cook University (Australia), and a Tutor at the University of Lampeter, where he is teaching a
 graduate course in archaeoastronomy for the Sophia Center. His research interests range from auroral physics, solar physics (radio astronomy, corona, flares) and archaeoastronomy (Peru, Egypt, India, and the American Southwest). Books that he has authored or edited include Prehistoric Astronomy in the Southwest, Time and Eternal Change, A Feather for Daedalus, Ancient Cities, Sacred Skies: Cosmic Geometries and City Planning in Ancient India, and Pilgrimage: Self-Organization and Sacred Landscapes. He is an Executive Editor of the on-line publication Journal of Cosmology.

Tsuko Nakamura was born in Seoul in 1943, during the Japanese colonization of Korea, and has Masters and Ph.D. degrees from the University of Tokyo. He is currently Professor of Information Sciences at Teikyo-Heisei University, and was formerly an Associate Professor at the National Astronomical Observatory of Japan in Tokyo. Tsuko is a member of IAU Commissions 20 (Positions and Motions of Minor Planets, Comets and Satellites) and 41 (History of Astronomy). He is also on the Editorial Board of the Journal of Astronomical History and Heritage. His main research interests lie in the size distribution of small asteroids and comets, and the pre-modern history of Asian astronomical instruments and star maps. He is the author of numerous research papers in the above two fields, and the following books: General Catalogue of the Japanese Astronomical and Land-surveying Books before 1870 (2005), History of Cosmovison and Science (2008), and Japanese Astronomers of the Edo Period (2008), all of which are in Japanese.

NHA Il-Seong was born in Seongjin City (North Korea) in 1932, and has B.Sc. and M.S. degrees from Yonsei University and a Ph.D. in astronomy from the University of Pennsylvania. He is Professor Emeritus at Yonsei University, a former President of IAU Commission 41 (History of Astronomy) and Chair of the IAU Working Group on Historical Instruments, and is on the Editorial Board of the Journal of Astronomical History and Heritage. He is one of those who initiated the International Conference on Oriental Astronomy (ICOA), and is the founder of the Nha Il-Seong Museum of Astronomy in Yecheon, Korea. His main research interests lie in the history of East Asian astronomy and in photometric properties of eclipsing binaries, and he has more than 200 publications, including the following history of astronomy books: Oriental Astronomy from Guo Shoujing to King Sejong (1997, co-edited by Richard Stephenson), History of Korean Astronomy (2000, in Korean), The Story of Solar and Lunar Eclipses (2002, in Korean, co-authored by Lee Jung-bok), Astronomical Instruments and Archives From the Asia-Pacific Region (2004, co-edited by Wayne Orchiston, Richard Stephenson and Suzanne Débarbat) and Murals of Four Holy Animals (2008, co-authored by Sarah Nha). Currently, Il-Seong is in the process of writing a multivolume history of astronomy in Korea.

NHA Sarah was born in Philadelphia (USA) in 1971, and has B.Sc. and M.S. degrees from Yonsei University (Korea). Following her father's lead, she has research interests in eclipsing binaries and the history of astronomy. She is a member of the IAU Working Group on Historical Instruments, and was responsible for setting up and developing the Working Group's web site.

Yukio Ôhashi was born in Japan in 1955, and obtained a B.Sc. in physics and an M.A. in Chinese culture from Saitama University (Japan) in 1979 and 1981 respectively, and a Ph.D. in history of mathematics from Lucknow University (India) in 1992. He also completed the doctorate course of Hitotsubashi University (Japan) in Social Studies (Social History of the East) in 1989. He is a member of IAU Commission 41 (History of Astronomy). His main research interest is the history of astronomy in the East, and his publications include chapters in the following books: Kim Yung Sik and Bray, F. (eds.), 1999. Current Perspectives in the History of Science in East Asia; Selin, H. (ed.), 2000.
 Astronomy Across Cultures. A History of NonWestern Astronomy; Ansari, S.M.R. (ed.), 2002. History of Oriental Astronomy; Chan, A.K.L. et al. (eds.), 2002. Historical Perspectives on East Asian Science, Technology and Medicine; Orchiston, W. et al. (eds.), 2004. Astronomical Instruments and Archives from the Asia-Pacific Region; Jiang Xiaoyuan (ed.), 2005. History of Science in the Multiculture: Proceedings of the Tenth International Conference on the History of Science in East Asia; Chen, K.-Y., Orchiston, W., Soonthornthum, B., and Strom, R. (eds.), 2006. Proceedings of the 5th International Conference on Oriental Astronomy; and Narlikar, J.V. (ed.), 2009. Science in India (History of Science, Philosophy and Culture in Indian Civilization, Volume XIII, Part 8).

Wayne Orchiston was born in Auckland (New Zealand) in 1943, and has B.A. (Honours) and Ph.D. degrees from the University of Sydney. He is currently an Associate Professor of Astronomy at James Cook University, Townsville, Australia. A former Secretary of IAU Commission 41 (History of Astronomy), he is the founder and former Chair of the IAU Working Group on Historic Radio Astronomy and is also on the Committee of the IAU Working Group on Transits of Venus. In addition to Commission 41, he is a member of IAU Commissions 40 (Radio Astronomy) and 46 (Astronomy Education and Development). He is the founding Editor of the Journal of Astronomical History and Heritage. Wayne's research interests lie mainly in astronomical history, astronomical education and meteoritics, and he has more than 200 publications, including the following books: Nautical Astronomy in New Zealand. The Voyages of James Cook (1998), Astronomical Instruments and Archives From the Asia-Pacific Region (2004, co-edited by Richard Stephenson, Nha Il-Seong and Suzanne Débarbat), The New Astronomy: Opening the Electromagnetic Window and Expanding our View of Planet Earth (2005, editor), Proceedings of the 5th International Conference on Oriental Astronomy (2006, co-edited by Kwan-Yu Chen, Boonrucksar Soonthornthum and Richard Strom) and Foundations of Australian Radio Astronomy. A New Picture of the Southern Sky (2011, co-authored by Woody Sullivan).

John Pearson was born in 1947 in the USA, and has a B.Sc. (Physics) from Redlands University, a Master of Communication and Library Science (California State University) and a Master of Astronomy from the University of Western Sydney (Australia). In 2009 John graduated with a Ph.D. from James Cook University (Townsville, Australia) with a thesis on "The Role of the 40 Foot Schaeberle Camera in the Lick Observatory Investigations of the Solar Corona", supervised by Wayne Orchiston and "Kim" Malville. He is retired, and lives in Rancho Mirage, California (USA). His primary research interests are in the history of solar astronomy and in historic telescopes and other instruments. He is a member of the Antique Telescope Society. In 2008 his paper on "The 40 -foot solar eclipse camera of the Lick Observatory" (co-authored by Wayne Orchiston) appeared in the Journal of Astronomical History and Heritage .

Bruce Slee is one of the pioneers of radio astronomy. He was born in Adelaide (Australia) in 1924, and received B.Sc. (Honours) and D.Sc. degrees from the University of New South Wales in 1959 and 1971 respectively. He is currently an Honorary Fellow at the CSIRO Division of Astronomy and Space Science in Sydney and an Adjunct Professor in the Centre for Astronomy at James Cook University, Townsville (Australia). He is a member of IAU Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), and the IAU Working Group on Historic Radio Astronomy.
 He independently detected solar radio emission during WWII, was one of the original discoverers of the first discrete radio sources, participated in the first metre-wave all sky surveys, and along with Bernard Lovell pioneered the investigation of radio emission from stars other than the Sun. His other research interests include scattering in the interplanetary medium, absorption in the interstellar medium, pulsar research, surveys of clusters of galaxies, and radio relics in clusters. He continues to carry out research on active stars, microquasars and clusters of galaxies, and has also published a succession of papers on the history of Australian radio astronomy, mainly in collaboration with Wayne Orchiston and his James Cook University Ph.D. students. [Editors' note: We are pleased to report that all four 2005-2006 issues of the Journal of Astronomical History and Heritage were dedicated to Bruce Slee, in recognition of his remarkable 60-year involvement in world radio astronomy.]

Mitsuru Sôma was born in Kuroiso (Tochigi Prefecture, Japan) in 1954, and has M.Sc. and Ph.D. degrees in astronomy from the University of Tokyo. He is currently an Assistant Professor at the National Astronomical Observatory of Japan. Mitsuru is an Organizing Committee member of IAU Commission 41 (History of Astronomy). He is also a member of IAU Commissions 4 (Ephemerides), 6 (Astronomical Telegrams), 8 (Astrometry) and 20 (Positions and Motions of Minor Planets, Comets and Satellites). In addition he is also a Vice President for Grazing Occultation Services of the International Occultation Timing Association. His research interests include linkage
 of stellar reference frames with dynamical reference frames using observations of lunar occultations and changes in the Earth's rotation during ancient times using ancient records of eclipses and occultations.

Richard Stephenson was born in England in 1941, and has a B.Sc. (Honours) degree from the University of Durham, and M.Sc., Ph.D. and D. Sc. degrees from the University of Newcastle upon Tyne. He is currently an Emeritus Professor in the Department of Physics at the University of Durham and an Adjunct Professor in the Centre for Astronomy at James Cook University, Townsville (Australia). Upon his retirement from Durham University he was awarded a Leverhulme Emeritus Fellowship in order to continue his research. A former President of IAU Commission 41 (History of Astronomy), Richard is also a member of Commission 19 (Earth Rotation), and he is on the Editorial Boards of both the Journal for the History of Astronomy and the Journal of Astronomical History and Heritage. He is widely recognized as the founder of the specialist field of Applied Historical Astronomy, and uses ancient records from Babylon, China, Japan, Korea, the Arabic world and Europe to investigate historical variations in the Earth's rotation, historical supernovae, the past orbit of Halley's Comet, solar variability and historical aurorae. He has also carried out considerable research on ancient Asian astronomical manuscripts and star maps. For his work in historical astronomy he was awarded the Jackson-Gwilt Medal by the Royal Astronomical Society and the Tompion Gold Medal by the Worshipful Company of Clockmakers (London), and minor planet 10979 has been named Fristephenson. Richard has more than 200 publications, including the following books: Atlas of Historical Eclipse Maps: East Asia, 1500 BC-AD 1900 (1986, co-authored by M.A. Houlden), Secular Solar and Geomagnetic Variations Over the Last 10,000 Years (1988, co-authored by Arnold Wolfendale), Oriental Astronomy from Guo Shoujing to King Sejong (1997, co-edited by Nha Il-Seong); Historical Eclipses and Earth's Rotation (1997), Historical Supernovae and their Remnants (2002, co-authored by David Green) and Astronomical Instruments and Archives From the Asia-Pacific Region (2004, co-edited by Wayne Orchiston, Nha Il-Seong and Suzanne Débarbat).

Ronald Stewart was born in Gordonvale (Queensland) in 1939, and has a B.Sc. (Honours) degree in physics (University of Queensland), a Master of Teaching degree (University of Technology, Sydney) and a Ph.D. in history of astronomy (James Cook University, Queensland). He was a Principal Research Scientist with the CSIRO's Division of Radiophysics working in solar radio astronomy before joining the Australia Telescope in 1986 where he worked in galactic and stellar radio astronomy. He also spent time as a visiting astronomer at the University of Hawaii
in 1972, the University of Colorado (Boulder) in 1981 and the Naval Research Laboratory (Washington, DC) in 1983. He left CSIRO in 1996 to teach secondary school science, and retired in 2006. Ron is a member of IAU Commission 40 (Radio Astronomy) and the IAU Working Group on Historic Radio Astronomy, and is currently researching the history of Australian radio astronomy in collaboration with Wayne Orchiston and Bruce Slee.

Richard G. Strom was born in New York City (USA) in 1944, and has a B.A. in physics from Tufts University (USA) and M.Sc. and Ph.D. degrees in radio astronomy from the University of Manchester (Jodrell Bank), UK. Until his retirement in 2009 he was Senior Research Astronomer at ASTRON (the Netherlands Institute for Radio Astronomy) in Dwingeloo, and Adjunct Professor of Astronomy at the University of Amsterdam. In 2010 he holds a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, and has been a Visiting Professor of Physics at the National University of Singapore. He is also an Adjunct Professor in the
 Centre for Astronomy at James Cook University, Townsville (Australia). Richard is a past Secretary and member of the Organising Committee of IAU Commission 40 (Radio Astronomy), and is also a member of Commissions 28 (Galaxies), 34 (Interstellar Matter) and 41 (History of Astronomy) and of the IAU Working Group on Historic Radio Astronomy. He is on the Editorial Board of the Journal of Astronomical History and Heritage. His research interests include supernova remnants, pulsars, large radio galaxies, radio polarimetry and interferometry, historical Chinese astronomical records and the history of radio astronomy in the Netherlands. He has numerous publications in a range of astronomical journals, and the history of astronomy book, Proceedings of the 5th International Conference on Oriental Astronomy (2006, co-edited by Kwan-Yu Chen, Wayne Orchiston and Boonrucksar Soonthornthum), in addition to co-editorship of the present ICOA Proceedings.

Kiyotaka Tanikawa was born in Gamago-ori (Japan) in 1944, and has M.Sc. and Ph.D. degrees in astronomy from the University of Tokyo. He is now a Special Visiting Scientist at the National Astronomical Observatory of Japan (NAOJ) following his retirement. He first had a post as an astrolabe observer at the International Latitude Observatory of Mizusawa (ILOM) in 1978 and stayed there until 1990. In 1988, there was a reorganization of Japanese astronomical institutes and the ILOM and Tokyo Astronomical Observatory of the University of Tokyo united to become the National Astronomical Observatory of Japan. Kiyotaka moved from Mizusawa to Tokyo in 1990 and began his career as an astronomer by making and analyzing CM diagrams of globular clusters before changing to theoretical studies: the restricted three-body problem, Solar System dynamics and chaotic dynamics in two-dimensional maps. In 1995 he added the general three-body problem to his research, and introduced numerical symbolic dynamics into this field. In 2001, he turned to history of astronomy when he began investigating historical changes in ΔT. Now he enthusiastically promotes the scientific study of ancient east Asia using the astronomical data that accumulated there.

Mayank Vahia was born in Bhuj (India), in 1956, and has B.Sc. and Master of Physics degrees from the University of Mumbai (India). He is currently a Professor in Tata Institute of Fundamental Research in Mumbai. He has worked on several projects involving Indian satellites flown on Indian, Russian and American missions to study high energy emission from the Sun and other objects. He has more than 190 publications in most of the major journals in astronomy and astrophysics as well as computer science. Mayank is a member of the IAU Commissions 41 (History of Astronomy) and 44 (Space and High Energy Astrophysics). For the past 4 years he has been researching the origin and growth of astronomy in the Indian subcontinent and has published more than half a dozen papers on the subject, including one in the Journal of Astronomical History and Heritage.

Harry Wendt was born in Angaston (Australia), in 1962, and has a B.Sc. (Honours) from the University of Technology (Sydney) and a Master of Astronomy from the University of Western Sydney (Australia). He currently works in a senior management role in the banking industry in Sydney, but has maintained a lifelong interest in astronomy, and particularly the history of radio astronomy. He is a member of the IAU Working Group on Historic Radio Astronomy. In 2009 he graduated with a Ph.D. from James Cook University. His thesis topic was "The Contribution of the C.S.I.R.O. Potts Hill and Murraybank Field Stations to International Radio Astronomy", and
 he was supervised by Wayne Orchiston and Bruce Slee. A number of papers based on his thesis research (sometimes co-authored by Wayne Orchiston, Bruce Slee and other members of the history of radio astronomy group at James Cook University) have appeared in the Journal of Astronomical History and Heritage and in Publications of the Astronomical Society of Australia.

Nisha Yadav was born in Mumbai (India) in 1983. She is a graduate in physics (2003) from Mahatma Gandhi University, Kottayam (Kerala, India) and is pursuing her Ph.D. in computer science at Mumbai University. She is a scientist at the Tata Institute of Fundamental Research, and has published more than ten papers on computer science and history of science in major Indian and international journals. Nisha has largely worked on various aspects of Harappan Civilisation and its script, and she has wide-ranging interests in the origin and growth of astronomy in India.

Tadato Yamamoto was born in Yokohama (Japan) in 1974, and has an M.Sc. (2000) from Kyoto Sangyo University and a Ph.D. (2004) in celestial mechanics from the Graduate University for Advanced Studies. He held a Post-doctoral Fellowship by Kyoto University between 2004 and 2007, and was one of the editors of Proceedings of the Second Symposium on "History of Astronomy" which was held in Kyoto on 19-20 December 2008. In 2008 Dr Yamamoto left astronomy, and he now works in a computer software company.

Seiko Yoshida was born in Hokkaido (Japan) in 1952, and had a B.Sc. in physics from Hirosaki University and an M.S. in history of science from Hokkaido University. After investigating relations between the Japanese anti-relativist Uzumi Doi and the Japanese physics circle during the 1920s, she became interested in the interaction between physicists and astronomers in Japan. She has especially focused on Kiyotsugu Hirayama, an astronomer sandwiched between two generations, his astronomical achievements, and the dynamics of the network of physicists and astronomers around him. Seiko has published three papers (in Japanese) about Hirayama in Kagakusii Kenkyu. She lives in Sapporo city, works as a researcher in science-technology studies at the Graduate School of Agriculture in Hokkaido University (Sapporo), and teaches history of science at the Muroran Institute of Technology.

Index

A

Abacus, 155
Abbé Lacaille, 236
Abbot, C.A., 260
Abbot, C.G., 259, 300
Abney, Captain, 327
Absorption, 189, 259, 272, 277, 301, 424, $435,461,462,467,503,505,595$
Absorption lines, 462, 595
Adams, C.E., 265, 309, 311
Adelaide (Australia), 227, 309, 311, 312
Aḍud al-Dawla, 122
Aerial, 382-386, 391-393, 401, 402, 404-406, 408-411, 414, 416, 420, 421, 435-447, 450, 452, 454, 483-486, 492, 493, 495, 498, 513, 522, 528, 531-533, 547-554, 556-558, 563, 565, 570, 571, 576, 577, 579, 595, 597-599, 601, 603, 604
Aerial beam, 404, 408, 409, 416, 421, 565, 597
Agricultural societies, 112
Agriculture, 88
Aguas Calientes (Peru), 92, 95
Aircraft propeller feather motor, 438
Air navigation, 436, 555, 605
Airy, G.B., 226, 257, 341
Aitken, Robert G., 247, 265, 266, 316-318, 320, 323, 331
al-Battāni, 122, 137
al-Bīrūn̄̄, 123
Albrecht, S., 265, 299-301
Alcor, 137
al-Dainaouri, 122
Alexander, E., 368, 617
Alfonsine tables, 123
Alhama (Spain), 256, 262, 264, 291-295
Allen, Claborn, 225, 227

Allen, L.B., 265, 307, 502, 504
Almagest, 6, 122, 123, 125, 133, 136, 138
al-Şūf $\overline{1}, ~ A .-R ., ~ 121-138 ~$
Altars, 95, 96, 100-102
Alt-azimuth mounting, 439
Alvan Clark and Sons, 251
Amalgamated Wireless Australia (AWA), 548
Amateur astronomers, 265
America, 234, 271-274, 331, 362, 369, 371, 623
American Astronomical Society, 314, 414, 540, 555
Amplifiers, 383, 406, 442, 559
Andromeda, 59, 123, 136, 137, 405
Andromeda Nebula (M31), 405
Andō Yūeki, 159
Annual Review of Astronomy and Astrophysics, 539, 603
Annular eclipse, 14, 33
Anomalistic month, 158, 160, 162
Antenna, 406, 420, 442, 512, 527, 534, 552, 554, 576, 582, 592, 596
Aperture synthesis, 422, 558, 582, 619
Apogee, 155, 157, 158, 162
Appleton, Sir Edward, 618, 623
Appulse of Mars and Jupiter, 148-149
Appulses of planets, 140, 149
Aprok River (China), 46, 47
Arabic astronomy, 121, 122, 137
Archaeoastronomy, 62
Archaeology, 61
Arequipa (Peru), 278
Arietis-Cetus region, 69
Artificial satellites, 4
Aryabhata, 78
Asia, 31, 35, 75, 76, 155, 179, 199, 219, 220, 227, 239, 548

Asteroid families, 171-194
Asteroids, 172-182, 188, 189, 192, 193
Astrolabe, 123
Astrology, 66, 67, 73, 76, 78, 123, 154
Astrometry, 178
Astronauts, 613
Astronomer, 5, 6, 9, 13, 16, 22, 23, 26, 54, $76,78,80,122,123,130,132,136$, $137,142,148,159,160,168,175$, $176,178,179,181,185,186,188-193$, 203, 204, 210, 216, 225-228, 236-239, 244, 245, 247, 249, 256, 258, 259, 261, 263, 265, 268, 269, 271, 273, 274, 278, 279, 282-285, 295, 305, 309, 312, 316, 317, 322-324, 326-328, 332, 341, 348-350, 355, 356, 359, 364, 367, 369, 370, 380, 415, 421, 424, 527-540, 548, 592, 594, 595, 604, 605, 607, 611, 615
Astronomical constants, 160
Astronomical Journal, 173, 193, 280, 414, 416, 419, 454
Astronomical observations, 53, 67, 73, 140, 154, 213, 272, 364
Astronomical records, 22, 53-57, 140-149, 151, 190-192, 209-221, 237
Astronomical Society of Australia, 539
Astronomical Society of the Pacific, 176, 266, 323, 326
Astronomical unit, 226, 234, 239
Astrophysical Journal, 416, 545
Astrophysics, 172, 177, 190, 194, 260, 539, 623
Asuka (Japan), 145, 146, 150
Aswan (Egypt), 262, 265, 295-296
Atharva Veda, 72
Athens (Greece), 13, 15
Atmospheric absorption, 272, 595
Attwood, C., 523, 532, 536, 621
Auckland Islands (NZ), 238
Aurorae, 140, 141, 211, 218
Ausengate, 103, 104
Australia, 227, 233, 235, 239, 262, 263, 265, 298, 308-316, 379, 380, 391, 394, 401, 402, 421, 424, 425, 473, 481, 482, 523, 535, 539, 547, 548, 551, 555-557, 562, 563, 572, 590, 595, 603, 606, 613, 618
Australian Aborigines, 309, 311, 312
Australian Academy of Science, 540
Australian Journal of Physics, 414, 418
Australian Journal of Scientific Research, 405, 412, 552, 563, 564
Australia Telescope Compact Array, 473, 539, 582
Austria, 227

B

Babylonian astronomical records, 6
Babylonian astronomy, 6
Badgerys Creek Field Station (Australia), 406, 422
Baghdad (Iran), 16, 122
Bailey's beads, 319
Baily, F., 257, 278, 340, 354, 362, 363
Baily, F. [Arequipa], 278
Bairnsdale (Australia), 553
Ball, Sir Robert, 329, 379
Bankstown Aerodrome, 380
Barnard, E.E., 250, 263, 267-270, 272, 323, 328
Bartlett Springs (California), 262, 263, 266-271
Basins, 95
Baumbach-Allen coronal density model, 502
Beamwidth, 382, 396, 407, 408, 440, 445, 450, 512
Beard, M., 447
Bell Telephone Laboratory (USA), 603
Bernabe' Cobo, 86
Bibliotheque Nationale (Paris), 129, 130
Big Bang, 435
Bigelow, F.H., 249, 329
Biggs, A.B., 237, 238
Big Pulkova Radio Telescope, 621
'Big science' projects, 380, 421, 425
Billings, B., 555
Birds, 237, 443
Blaauw, A., 190, 418, 419, 463
Black-drop effect, 226
Blum, E.-J., 619, 620
Bodleian Library (Oxford), 129, 130
Boischot, A., 423, 425, 506, 514, 611, 615, 621
Bolometer, 260, 300
Bolton, J., 380, 402, 405, 408, 410, 424, 434, $438,439,483,494,544,551,562,594$, 595, 605
Bombay (India), 63, 280, 281, 359
Bongseon Temple, 204, 206
'Book of the Fixed Stars', 121-138
Boss, B., 265, 297
Boulders, 112
Bowen, E.G. ('Taffy'), 401, 434, 437, 490, 527, 536, 544, 545, 547, 548, 557, 564, 589, 590, 593, 606
Bracewell, R.N., 408, 553, 554, 561, 571, 572, 621
Brahe, T., 54
Brashear, J.A., 250, 254, 255, 265, 268, 279, 305, 306, 308, 318
Bray, Captain, 88, 263, 275, 278

Brazil, 226, 237, 244, 328, 391, 548, 618
Brightness temperature, 399, 401, 412, 413, 450-453, 457, 463, 466, 564, 566, 573, 616
Brihad Samhita, 78
Brisbane (Australia), 387, 389, 556
Britain, 226, 227, 341, 380, 425
British Government, 280
British Museum (London), 6, 7
Broten, N., 619, 620
Brouwer, D., 175, 176, 192, 193
Brovary (Russia), 261, 262, 265, 302-304
Brown, E.W., 45, 178-180, 188, 189, 193, 278, 380, 406, 422, 578, 597
Buchanan, A.H., 264, 285
Bunsen, R.W., 259
Burke, B., 263, 290, 416, 420, 441, 442
Burkhalter, C., 366
Burnham, S.W., 263, 271-273, 323, 327
Burzaham (India), 68, 70
Butterfly condensers, 483, 484
Buwayhid Dynasty, 122

C

Ca II observations, 462, 468
Cairo (Egypt), 16, 123, 129, 265, 283, 295
Calendar-making, 74, 154, 179
Calendars, 71, 78, 154, 156, 159-160, 179, 191
Calibration system, 444
California Institute of Technology (USA), 434
camay, 87-89, 91
Cambridge (England), 193, 283, 328, 360, 380, 391, 403, 406, 422, 424, 540, 572, 592, 597, 603, 607
Cambridge 2C survey, 410
Camera, 227, 245-252, 254, 259, 267, 268, 270-281, 283-293, 295, 296, 298-303, 306-313, 317, 319, 323-325, 327, 329, 384
Campbell, Mrs E., 266, 280
Campbell Town (Australia), 228, 233, 237, 238
Campbell, W.W., 175, 246-249, 251-254, 258, 263-266, 280
Camptonville (California, USA), 262, 266, 316-317, 322
Canada, 262, 264, 265, 290-296, 348, 358, 363, 367, 424, 618-620
Cancer, 123, 130, 131
Cape of Good Hope (South Africa), 236
Carcel standard lamp, 269, 273
Carnegie Institute of Washington (USA), 620
Carpenter, M.S., 416
Carter, A.W.L., 387, 468, 556, 596
Carter Observatory (New Zealand), 387, 556

Cartwright (Canada), 262, 264, 290-291
Carvings, 95, 96, 99, 100, 104, 107, 108
Cavendish Laboratory (England), 592, 603
Caves, 85, 87, 90, 91, 101, 104, 107, 117, 904
Cayenne (French Guiana), 262, 263, 271-274
Celestial globe, 122, 123, 126, 130-132
Celestial mechanics, 172, 175-179, 182, 190, 193-194
Centaurus A, 405, 408, 410, 411
Central Library of Seoul National University (South Korea), 211
Cepheid variables, 190
Ceques, 86
Ceremonial doorway, 92, 100, 104, 107, 109, 116
Ceremonies, $73,105,107,108,111,112$
Cerro Unoraqui (Peru), 114, 115, 117
Chabot Observatory (USA), 254, 263, 266, 267, 279, 305
Chamberlin, T.C., 188
Chang' an (China), 12, 14, 143-145
Charged particles, 509, 607, 608
Chart recorder, 442-444, 446
Chatham Islands (New Zealand), 228, 233, 236-238
cheng, 13
Cheong Inji, 210
Cheonsang Yeolcha Bunya-jido, 199-207
chicha, 87-90, 93, 100
Chikhachev, B.M., 424, 618, 619
Chillas (Kaskmir), 67, 68
Chinchero (Peru), 86-89, 91
Chinese astronomical records, 225
Chinese characters, 53, 140, 147, 156, 202, 204
Chinese mathematics, 539
Chōkei Senmyō-reki Sanpō, 154, 156, 159
Choquequirao (Peru), 89
chou, 13
Chris-Cross Radio Telescope (Australia), 565, 577, 623
Christiansen, W.N. ('Chris'), 380, 381, 389-391, 393-403, 411-413, 416, 422, 423, 435, 456, 481, 483, 484, 547-583, 589, 600, 602, 605, 609, 614, 616, 619, 620, 623
Chromosphere, 253, 256, 258-259, 268, 271, 283, 285, 317-319, 321, 324, $325,328,330,331,348,395,397$, 400, 570, 575, 617
Chromospheric plages, 616
Chronograph, 285, 303, 305, 331, 350
Chronometers, 230, 296, 322, 352
Chunqiu, 21-42
Chunqiu Era, 21-42
Chuquimarca (Peru), 102

Clark, A., 227, 231, 251, 253, 267, 268, 270-273, 275-279, 350, 360
Clark refractor, 267, 271-273, 276-279
Classical astronomy, 172, 190, 192
Clerke, A.M., 244, 258-260, 329, 340, 341, 355
Climatic variations, 5, 19
Cloud Physics, 434, 436, 474, 605
Coal Sack, 462
Coelostat, 251, 298, 317, 321, 328
Collaroy (Australia), 549, 595, 617
Comets, 54-56, 62, 65, 69, 140, 142, 147-148, $179,190,193,210,211,219,259$
Compound interferometer, 620
Computers, 447, 571, 572, 605
Condors, 104
Congruence expressions, 163-168
Conjunctions of the Moon with planets, 210, 211
Constellations, 15, 65, 67, 69, 70, 74, 81, $123-125,130,132,134,136,137,147$, 202, 203, 205, 219
Continuum emission, 410, 577
Contributions from the Lick Observatory, 326
Cook, J., 122, 302
Cordillo Downs (Australia), 311
Coricancha (Peru), 86, 90, 91, 94, 95, 116
Corichancha (Peru), 88, 112
Cornell University (USA), 416, 561
Corona, 123, 124, 244, 245, 248, 250, 251, 254, 256-260, 268-273, 275, 276, 278, 283, 285, 286-289, 291, 293, 294, 296, 299-303, 305-308, 312, 313, 315-321, 323, 324, 326-332, 339-342, 345-348, 354, 357, 359, 362, 363, 365-368, 370, 384, 385, 390-392, 395, 397, 424, 457, 482, 487, 489, 502-505, 515-521, 531, $532,535,536,539,556,570,573,575$, 581, 594, 595, 597, 600, 606-613, 615, 616, 618, 619
Coronagraph, 260, 538, 595, 615
Coronal bright lines, 289, 301, 312
Coronal brightness, 257-258, 283, 294, 327-328
Coronal green line ('coronium'), 286, 291, 294, 300, 301, 303, 306-308, 317, 320, 328
Coronal mass ejection events, 509
Coronal motion, 257
Coronal polarization, 254, 258, 289
Coronal rays, 323, 342
Coronal streamers, 283, 285, 286, 300, 307, 308
Coronal studies, 273, 311, 340
Cosh, J., 266, 318
Cosmic rays, 500, 531, 604
Cosmogony, 66, 67, 73, 74
Cosmology, 71, 72, 87

Covington, A.E., 424, 556, 618-620
Crab Nebula, 54, 405, 408, 619
Crimea (Russia), 619
Crocker, C.F., 250, 261, 271, 278, 280, 286
Crocker Telescope, 250
Crocker, W.H., 265, 286, 290, 297, 305, 316
Crossed-grating interferometer, 577, 581
Crozet Island (Indian Ocean), 228, 237
CSIRAC (CSIR Automatic Computer), 572, 574
CSIRO Division of Physics (Australia), 500
CSIRO Division of Radiophysics (Australia), 523, 540, 547, 589, 595
Culgoora Radioheliograph (Australia), 425, $523,534,536,538,539,603,606,617$
Curlewis, 311
Curmey, M., 263, 278
Cusco (Peru), 86, 89, 91, 92, 94, 95, 100, 102, 112, 114, 116
Cygnus A, 402-404, 408, 424, 494, 495, 501, 600
Cygnus X, 404, 408, 424

D

Dakar (Africa), 619
Dallmeyer camera, 271-273, 277, 278, 287, 289, 292
Dapto Field Station (Australia), 481-523
Dapto polarimeter, 495-497
Darkroom, 276, 285, 311, 319, 323
Davies, R.D., 390, 399, 400, 424, 456, 458, 557, 575
dayan-qiuyi-shu, 165
Day time hours, 150
Delisle, J.-N., 226
$\Delta T, 4-6,8-19,22,23,27-29,31-42,141$, 145, 146
Department of Terrestrial Magnetism (USA), $441,456,457,620$
Descending node, 79, 157, 158, 163
Design, 75, 76, 91, 204, 245, 247, 248, 282, 326, 383, 396, 408, 414, 422, 434-438, 441, 468, 527, 536, 547, 548, 556, 557, 570, 577, 591, 595-603, 605, 609
Deslandres' theory of the corona, 283
Deuterium line, 435, 437, 441, 562
De Vaucouleurs, G., 415, 470, 472
Developmental phases in astronomy, 67
de Voogt, A.H., 618
Dicke, R.H., 406, 617
Differential galactic rotation, 456, 458
Diffraction bands, 268
Diffraction grating, 554

Digital recording and data reduction system, 445, 468
Digital shaft encoder, 448
Discrete sources, 402-405, 407, 410, 424, 483, 582, 605
Distance estimates, 458
Divination, 100, 154
Division of Radiophysics, CSIRO (Australia), 379-523, 527, 535, 536, 540, 543-545, 547, 548, 580, 581, 589, 590, 594, 595, 604-606, 608, 616
Dodson, H.W., 400, 423, 575
Do Jeung, 200
Double lobe sources, 410
Double stars, 247, 272
Dover Heights Field Station (Australia), 434, 435, 483, 594, 598
Dragons, 47-50, 52
Dust clouds, 454

E

Eaglehawk Neck (Australia), 394, 553
Earth, 3-19, 22, 28, 42, 62, 63, 67, 72, 74, 78, 86-89, 96, 104, 141, 147, 226, 277, 294, 297, 301, 316, 340, 348, 361, 366, $367,380,383,399,421,422,443,450$, $470,472,509,512,531,534,536,570$, 576, 581, 595, 597, 600, 607, 613
Earth-Moon system, 4
Earthquakes, 141
Earth rotational synthesis, 380, 399, 422, 570, 576, 581
Earth's rotation, 3-19, 22, 78, 383, 421, 422, 450, 570, 597
East-west problem of latitude observations, 182
East-West Solar Grating Array, 422, 557-561, 565
Eclipse Committee of the American Astronomical Society, 314
Eclipse expeditions, 192, 243-332, 349, 357, 358, 360
Ecliptic, 69, 107, 124, 127, 129, 268, 341
Eddington, Sir Arthur, 190, 261, 328, 329
Edison, T., 260, 357, 365-367, 370
Edlén, B., 328
Edmondson, F.K., 416
Edo Period (Japan), 155, 168
Einstein's General Theory of Relativity, 261, 302, 303, 328-329
Electrical workshop, 604
Electron density, 487, 505, 515, 532, 556
Electronics, 592
Electron temperature, 410

Elgaroy, O., 621
Elgin watches, 296
Emission, 259, 260, 312, 316, 317, 320, 321, 331, 380, 388, 390, 400-403, 408, 410-415, 420, 424, 425, 433, 435, 454, $458,461,462,464,467,470,471,482$, 487, 501, 504, 506, 509, 514, 517-519, 531, 534, 539, 543-545, 556, 560, 561, 564-566, 568, 575, 577, 580-582, 592, 593, 595, 598, 604, 607-611, 613, 616-618, 621
Emission lines, 259, 260, 320, 321, 545
Emission nebulae, 410, 415, 582
Engineers, 238, 263, 380, 421, 590
Ensenada, Baja California (Mexico), 262, 265, 314-316
Eos asteroid family, $174,175,181$
Equatorial mounting, 252, 276, 312
Equinoxes, 64, 65, 70, 76, 99, 101
Equipment hut, 420, 438, 440, 443
Erickson, W.C. ('Bill'), 455-457
Eruptive prominences, 317, 321, 504, 536, 538
Eta Carinae Nebula, 410
Ethnoastronomy, 116
Europe, 5, 13, 16, 54, 75, 295, 302, 359, 360, 364
Ewen, H.I., 402, 412, 543, 545, 561-563
Extinction, 454
Extra-galactic research, 424, 474

F

Fabry and Perot etalon interferometer spectrograph, 320
Faculae, 256
Fairweather, G., 420, 596
Fan beams, 395, 396, 559, 577, 600
'Father Sky', 63
FIAN (Russia), 619
Filter banks, 600
Firor, J.W., 620
Flare patrol telescope, 500
Flares, 500-501, 504
Flash spectrum, 251, 252, 258, 292, 301, 303, 308, 317, 321
Fleet, Captain, 263, 283
Fleurs Field Station (Australia), 401, 577-581
Fleurs Synthesis Telescope (Australia), 582, 583
Flint Island (Pacific Ocean), 251, 262, 265, 297-302, 326
Flora asteroid family, 175
Florence (Italy), 283
Floyd Telescope, 251, 287, 303, 317

Fokker, A.D., 620-622
Folded dipoles, 407
Folk astronomy, 121, 137
Ford Foundation, 481, 534, 589, 603, 606
Fort Davis Field Station (USA), 620
Fountains, 94, 117
Fourier analysis, 398, 422, 554, 570, 571, 573
France, 129, 226, 227, 311, 332, 399, 422, 423, 506, 576, 615, 618, 620, 621, 623
Franklin, K.L., 355, 390, 420
Fraunhofer lines, 288, 289, 294, 312
Frequency, 218, 371, 382, 387, 390, 394, 403, 407, 411, 412, 414, 415, 422-424, 434, 435, 438, 441-445, 458, 482, 484-487, 489-493, 495-497, 499, 501-503, 506, 507, 509-515, 518, 521-523, 527, 529-533, 544, 545, 551, 554, 556, 558, 559, 564, 569, 591, 592, 598, 600, 604, 609-611, 613-615, 617, 621-623
Frogs, 88
Fryeburg (Maine), 318-321
Fujiwara Matsusaburz, 165
Fukuoka (Japan), 150
Funding, 233, 235, 244, 261, 271, 278, 290, 297, 316, 326, 327, 331, 534, 580, 591, 603-606

G

Galactic Centre, 405, 408, 417, 424, 435, 455, 456, 467, 468
Galactic equator, 412, 455, 457, 466, 564
Galactic poles, 455
Galactic research, 424
Galactic rotation, 416, 454-456, 458, 463
Galactic structure, 412, 415, 416
Galaxies, 136, 245, 246, 380, 403, 406, 408, 410, 412, 414-420, 423, 424, 433, 435, $442,454,458,462,463,467,470,472$, 564, 581, 582, 603
Gale, W.F., 263, 277, 278, 291
γ-ray, 613
ganzhi, 22, 23, 26, 42, 160
Gardner, F.F., 420, 421
Gascoigne, Ben, 539
Gas flow, 409
Gelfreich, G.B., 621
geng, 13
Geodetic measurements, 264, 316
Geomagnetic disturbances, 621
Geonsang Yeolcha Bunya-ji-Do, 199

Geophysics, 22, 193
Georges Heights Field Station (Australia), 550-551
Germany, 129, 176, 226, 369
Getmanzev, G.G., 435
Ginat, M., 619
Ginzburg, V.L., 515, 606, 618
Giovanelli, R.G., 504
Glancy, E., 265, 308
Gnomon, 95, 104, 105
gods, 49, 62, 63, 67, 71, 72, 80, 87
Goldendale (Washington State, USA), 262, 265, 304-308
Gongyang-zhuan, 22-26, 40, 41
Gorky State University (Russia), 435
Goryeosa Cheolyo, 211
Goth Hill (Canada), 619, 620
Grazing occultation, 145
Great Comet of 1901, 290
Great Rift, 462
Greek astronomy, 78
Green Bank (USA), 436
Greenstein, J.L., 454, 544, 604
Grotrian, 328
Guliang-zhuan, 22, 23, 25, 26, 41
Gum, C.S., 408, 410, 418-420, 452
Gun-laying radar trailer, 438
Guo Shoujing, 155

H

Hachijo-jima (Japan), 621
Haddock, F., 506, 513, 620
Hagen, J.P., 424, 619
Hagihara Yusuke, 176, 188
Hale, G..E., 329, 332, 392, 540
Halley, E., 226, 235
Halley's Comet, 218-221
Hanbury-Brown, Robert, 380, 406, 422, 597
Han Dynasty (China), 22, 23
Hanshu, 12, 23, 26, 41, 147
Harkness, W., 233, 237, 257, 260, 354, 355, 358, 360, 365
Harmonic structure, 482, 486, 487, 504, 532, 611, 619
Harvard College Observatory (USA), 229, 253, 266, 278, 327, 328, 350, 357, 371, 561
Harvard University (USA), 358, 543, 561, 620
Hastings, C.S., 254, 258, 267, 268
Hazama Shigetomi, 155
Hazard, C., 406
Hearst, Mrs Phoebe, 262, 274, 279, 302

Heat-sink, 443
Hecuba, 188
Hefner standard lamp, 299, 300, 315
Height versus time plots, 611
Heinrich Hertz Institute (Berlin), 622
Heliostat, 229, 230
Helium, 259, 348
Helium line, 259, 348
Hellerich, J., 190
Helwan Observatory (Egypt), 295
Hepburn, N., 154, 159, 160, 619
Hercules A, 405
Heritage, 583
'Herringbone' structure, 506, 516-521
Herschel, J., 236, 259, 260, 340, 540
Herschel, L., 348
Hey, J.S., 402, 435, 605, 617, 618
HI clouds, 464
Higgins, C.S., 421
Higgs, A., 562
High resolution, 244, 276, 299, 391, 395, $406,422,473,554,565,600$
HII regions, 408, 410, 451, 452, 462, 471
Hilda, 188
Hilda asteroid group, 180
Hill, C.B., 263, 267, 268, 283
Hindman, J.
Hirayama Akira, 166
Hirayama Kiyotsugu, 171-194
Hiroi, 279
Historians of astronomy, 19, 213
History Science Society of Japan, 191
H -line multi-channel receiver, 435
H-line profiles, 416, 446, 455, 458, 463, 466, 472
Hobart (Australia), 228, 232, 233, 237, 238
Holden, E.S., 244, 245, 250, 258, 260, 261, 266, 267, 269-274, 277, 279, 280, 306, 323, 326, 327-329, 358, 365, 367
Hole, A., 263, 277
'hole-in-the-ground' aerial, 435
Holland, 227, 264, 512, 563, 623
Holmes, E.C.J., 468
Horizon markers, 116
Horizontal heliograph, 248
Hornsby Valley Field Station (Australia), 380, 390, 420, 618
Hosking, J.B.O., 265, 309
Houhanshu, 12, 147
Houtgast, J., 618
Howard Clock Company, 230
huacas, 85-117
Huayna Capac, 86, 91, 109, 112, 115, 116

Hubble's zone of avoidance, 454
Hudson Bay Company, 290
Hulst, H.C. van de, 402, 416, 463, 464, 467, 543, 556, 561
Humans, 62, 63, 72, 88, 361
Hunter-gatherer societies, 66
Hussey, W.J., 265, 282, 295, 296
Hwando, 46, 47
Hydrogen, 259, 260, 331, 348, 354, 359, 367, 369, 380, 402, 408, 412-417, 419, 423, 424, 433, 436, 442, 448, 451, 453-467, 469-472, 475, 543-545, 564-566, 582, 598
Hydrogen-line emission, 412, 413, 566

I

idai-keishō, 155, 156
Ikeda Masaoki, 156
Ikhsanova, V., 621
Incas, 85, 87, 89, 91, 94, 96, 104, 105, 108, 109, 111, 114
India, 62, 70, 74, 75, 80-82, 129, 130, 235, 251, 262, 263, 279-283, 285, 286, 345, 346, 348, 359, 362, 387, 401, 491, 557, 620
Indian astronomy, 65
Indian culture, 70
Indian Ocean, 227, 228, 233, 236, 239
Indian prehistory, 61
Indian temples, 75
Indus culture, 75-76
Innovative design, 591, 595-602
Instrumentation, 78, 229-232, 234, 243, 421
Intercalary months, 70, 71, 79, 159
Interference fringes, 403, 500, 555, 556, 595
Interference pattern, 383, 387, 406, 421, 492, 493, 511, 550, 596, 597
International Astronomical Union, 233, 247, 540
International Astronomy Union (IAU) sub-commission 33b, 418
International Geophysical Year, 621
Interplanetary shock waves, 615
Interscan, 536
"In the Shadow of the Moon" (diary), 280
Intimachay (Peru), 91
Intiwatana (Peru), 89, 90, 94-96, 117
Intra-Mercurial cameras, 253
Intra-Mercurial planets, 299, 303, 313, 350, 352
Ionised gas, 404
Ionosphere, 402, 403, 420, 421, 493, 494, 518, 523, 534, 592, 612, 613, 618
Ionospheric research, 590
Iran, 122, 123, 129

Isfahan, 122
Isophote maps, 57, 580, 581, 616
Italy, 129, 227, 295, 341

J

Jaeger, J.C., 502, 504, 515
Jōkyō-reki, 155, 159
Jansky, K., 592, 603
Janssen, J., 227, 258
Jantar Mantars, 80
Japan, 54-56, 140-151, 154-156, 159, 164, $165,168,172,176,177,179,185-188$, 190-193, 200, 227, 233, 262, 263, 278-280, 422, 619, 621, 623
Japanese astronomical records, 140
Japanese astronomy, 139-151, 154-155, 176, 182, 188, 192
Japan-Russia Border, 185-188
Jeffers, J.M., 317
Jeur (India), 262, 263, 279-283
Ji-an, 46-52
Jiankang (China), 15
Jinkōki, 155, 156
Jitô era, 140, 141, 148-149, 151
Jodrell Bank, 400, 416, 422, 424, 435, 436, 441, 456, 575, 597
Joisce, J., 491
Jomei era, 140, 142, 144, 147
Joseon Dynasty (Korea), 201, 203, 211, 214
Joseon Wangjo Sillok, 211, 212, 215, 216
Jovian bursts, 420-421
Jupiter, 80, 148-149, 174, 179-181, 188, 367, 382, 390, 420, 421

K

Kakinuma, T., 619, 621
Kalyan Radio Telescope (India), 401
Kansei-reki, 155
Karnataka (India), 63, 64
Kaya, 45, 46
ke, 13, 16
Keeler, J.E., 245, 246, 263, 267-270, 284, 286, 329
Keeling, B.F.E., 295
keisaku, 157, 159, 161-162
Kengyōsō, 156, 159
Kenki-sanpō, 153-168
Kenki-sanpō dai-shijūku kaijutsu, 158
Kenko Grande (Peru), 88, 95-102
Kennedy Dish (Australia), 437
Kensington (England), 283
Keonsang Yeolcha Bunya-ji-Do, 204, 205, 207

Kerguelen Island (Indian Ocean), 228, 233, 236, 237
Kerr, F., 380, 405, 412, 414-419, 434-436, $441,463,464,467,469,471,472$, 548, 550, 561, 562, 565, 598, 605
Khaykin, S.E., 424, 618
Kim Cheongso, 210, 211
Kimura Hisashi, 172, 176
King Gojong, 215
King Gongmin, 204
King Injo, 216
King, J., 263, 278
King Taejo, 201
King Taejong, 211, 214
King Yangweon, 52
King Yi Taijo, 207
Kirchhoff, G.R., 259
Kirkwood gaps, 178-181, 188, 189
Kodaikanal Observatory (India), 387, 557
Koguryo Tumulus, 45-52
Komesaroff, M., 491
Kootwijk (The Netherlands), 441, 620
Korea, 46, 54, 55, 143, 144, 146-148, 154, 156, 159, 190-193, 199-207, 210, 215
Korean astronomical records, 209-221
Korean National Treasure, 203
Koronis asteroid family, 174, 175, 181
Koryo Dynasty (Korea), 204, 206
Koryo-sa, 159, 204
Koryo star chart, 206, 207
Krishnan, T., 401, 402, 580
Kundu, M., 620
Kwan Reuk, 200
Kwon Keun, 201, 203-207

L

Labrum, N., 387, 393, 401, 402, 536, 580, 617, 618
Lacco (Peru), 87, 90, 102-108, 117
Laffineur, M., 618
Lake Titicaca (Peru), 87, 88, 101
Large Magellanic Cloud, 407, 415, 422, 471, 473
Latitude, 13, 16, 29-31, 73, 78, 108, 129, 172, $176,178,182-186,193,218,226,231$, $262,272,299,311,316,322,416,418$, 450, 455-460, 462, 463, 573, 607, 613
Latitude observations, 178, 182-186, 193
Latitude variation, 172, 176, 184-186, 193
Le Gentil de la Galasiere, 235
Le Grande Interferometer (France), 425, 620, 621
Lehany, F., 381, 548, 550, 618, 619

Leiden, 264, 412, 416-419, 423, 463
Leiden-Sydney H-line map, 423
Leuschner, A.O., 263, 267, 268, 305
Library, 129, 178, 209, 216, 604
Lick, J., 244, 251, 261, 331
Lick Observatory, 243-332, 357, 371
Lick Observatory Board of Regents, 244, 245, 273
Lick Observatory Bulletin, 326
Lick Observatory Leaflets, 326
Light-tube, 107, 108, 117
Limb-brightening, 391, 392, 395, 399, 401, 402, 422, 548, 550-556, 561, 568, 569, $573,575,576,581,610,619,620$
Little, A., 380, 384-388, 390, 391, 407, 421-423, 513, 514, 551, 595-597, 600, 602, 613, 615, 619
Little, C.G., 402
'Little Science,' 590
Liuxin, 22, 24-26
Llactapata (Peru), 88, 90-95, 116, 117
Llamas, 88, 108
Lloyd's mirror, 595
Local oscillator, 383, 436, 438, 440, 443, 445
Lockyer, N., 258-260
Long-baseline interferometry, 597
Longitude, 29, 31, 78, 123, 127, 129, 157, 174, 203, 226, 231, 233, 262, 272, 299, 311, 316, 322, 416, 418, 450, 456-462, 613
Loughhead, R.E., 500, 501
Lovell, B., 402
Luck, 237, 563, 590, 591, 594
Lumsden, G.E., 264, 285
Lunar eclipse, 4-6, 8-14, 16, 22, 23, 27, 142-144, 148, 211, 367
Lunar laser ranging, 4
Lunar observations, 6, 8, 617
Lunar occultation of Mars, 140, 145-146
Lunar occultations, 4, 140, 142-146
Lunar tidal acceleration (LTA), 22, 28, 29, 31, 32, 35-38, 42
Luni-solar calendar, 76, 159-160
Luoyang (China), 12
Lyons, Captain H.G., 295
Lyot, B., 260, 331, 332, 554, 555, 600

M

MacAlister, K., 494, 604
Macgregory, W., 290
Machin, K.E., 391
Machu Picchu (Peru), 87, 89-95, 116, 117

Madrid Observatory (Spain), 291
Magazines, 319, 359
Magellanic stream, 470, 472
Magnetic crochets, 390
Magnetic fields, 332, 392, 400, 458, 487, 506, 509, 518, 519, 536, 551, 552, 575, 604, 613
Magnetogram, 387, 557
Magneto-hydrodynamic shock waves, 519
Magnitudes, 15, 28, 37, 69, 121, 122, 124-126, 129, 130, 133-136, 138, 142, $144,145,184,226,247,254,260,289$, 350, 403, 505, 512, 517
Mahabharata, 73, 74
Makala (Africa), 619
Malvern (England), 423, 435
Manuscripts, 22, 52, 87, 122, 125, 126, 129-130, $132,159,166,167,193,326,590$
Mare Island (USA), 315, 317
Maria asteroid family, 175
Mars, 9, 140, 142, 145-146, 148-149, 218, 219, 367
Martyn, D.F., 391, 548, 592, 593, 606, 607, 609, 611, 618
Mathematical astronomy, 74, 79, 154, 168
Mathematical texts, 153-168
Mathematics, 62, 76, 79, 154-156, 165, 166, 177, 194, 323, 539
Mathewson, D., 401, 423, 437, 438, 461, 470, 472, 481, 577, 580, 583, 589, 602, 616, 620
Maxwell, A., 513, 620
McCready, L., 382, 421, 436-438, 482-484, 490, 527, 529, 530, 548, 555, 593-595, 598, 607-610, 618, 619
McGee, R., 382, 405, 435, 437, 438, 440, 442, 447, 450-468, 618
McLean, D., 506-510, 617
McMath Hulbert Observatory (USA), 401
Mechanical workshop, 604
Medical imaging, 572
Megalithic Period, 70
Megaliths, 69, 75
Melbourne (Australia), 227, 237, 309, 315, 390, 391, 548, 603
Menzel, D.H., 252, 253, 266, 317, 320, 324, 328, 330, 331, 561
Mercury, 65, 149, 260, 268, 302, 367
Merfield, C.J., 265, 301, 315
Merfield, Z.A., 265, 315, 316
Meteorite fall, 142, 144
Meteoroids, 189
Meteorological reports, 266, 278, 280, 314, $318,350,352,360,362,363$

Meteors, 54-57, 62, 65, 140-142, 147, 148, $210,211,259,352,362$
Meteor showers, 62
Meudon Observatory (France), 399, 422, 576, 618
Mexico, 227, 262, 265, 314-316, 368
Michelson interferometer, 383, 391, 402, 403, 422, 548, 554
Micrometer, 184, 185, 231
Milan (Italy), 283
Milky Way, 88, 94, 250, 323, 412, 415, 416, 420, 458, 463, 592
Miller, J.A., 264, 285, 324, 329
Mills, B., 385, 391, 400, 402, 403, 406, 407, $410,422,424,494,539,544,547,551$, 576, 602, 605
Mills Cross, 411, 420, 422, 434, 539, 577, 578, 605
Mills Cross prototype, 382, 406-407, 422, 576, 602
Milton, J.A., 455-456, 462, 463, 466-468
Mina Bronces (Chile), 262, 263, 274-278
Minkowski Rudolf, 403
Minnett, H., 387, 393, 402-406, 408, 424, 490, 548, 553, 571, 618
Missing mass, 472
Mitaka (Japan), 621
Mixer, 440
Mizusawa Latitude Observatory (Japan), 176
Mohenjo Daro, 75, 76
Monthly Notices of the Royal Astronomical Society, 176, 266, 331
Moon, 3, 4, 6, 8, 16, 22, 26, 30, 47, 49, 50, $63-65,69,70,73,74,79-81,87,102$, $107,108,142,145,146,148,157-163$, $178,179,190,193,194,202,203$, 210-212, 218, 219, 249, 256-259, 268, 269, 273, 280, 294, 297, 299-301, 311, $340,341,345,359,367,369,391,392$, 405, 552
Moore, J.H., 265, 266, 306, 307, 312, 316-318, 320
Moray, 91
Morgan, W.W., 305, 412, 564
Morioka (Japan), 150
Mortimer, 265, 300
Moscow, 418
'Mother Earth,' 63
Moulton, F.R., 189
Mountains, 13, 85, 87
Mt. Stromlo Observatory, 387, 389, 390, 400, $415,556,575,594,607,618$
Mt Wilson Observatory, 329, 332, 403, 592
Mullaly, R., 580, 616

Muller, C.A., 412, 450, 463, 543, 561, 563
Multi-channel H-line receiver, 435
Multi-frequency observations, 614
Multi-phase interferometer, 621
Mummies, 87, 88, 96, 101, 112
Munheon Bigo, 212
Murals, 45-52
Murraybank Field Station (Australia), 433-475
Murray, J., 434-438, 442, 443, 446, 447, 450-461, 468, 470, 474, 483-487, 489, 491, 493, 495, 527, 529, 532, 544
Museums, 6, 7, 129, 187, 203, 206, 236, 238
Myths, 62-64, 69, 78, 87, 88

N

Nagasaki (Japan), 233
Nakayama, S., 156, 176
Nakshtras (Indian lunar mansions), 69
Nançay (France), 506, 620, 621
Nara (Japan), 150
NASA, 425, 475, 613
National Observatory, Poulkowa, 304
National Palace Museum (Seoul), 203
National Radio Astronomy Observatory (USA), 605
Natural landscape, 85
Nature, 5, 62, 63, 67, 72, 73, 87-89, 91, 176, 178, 239, 245, 247, 256-261, 271, 330, $339,340,348,349,359,364,365,369$, 401, 405, 406, 410, 411, 416, 454, 456, $458,482,493,518,532,543,552,553$, 556, 563, 572, 577, 598, 607, 609
Nautical Almanac Office, 233, 316, 322, 355, 364
Navigational astronomy, 81
Nazca (Peru), 86
Nebulae, 136-137
Needham, J., 6, 156, 191
Negatives, 4, 6, 257, 269, 272, 273, 278, 286-289, 294, 296, 301, 302, 313, 341, 343, 435, 455, 462, 521
NERA (The Netherlands), 620-622
Netherlands, 410, 441, 456, 468, 618, 620-622
Neutral hydrogen (HI), 415, 417-419, 423, 424, 433, 435, 451-464, 467-472, 475, 582
Newcomb, S., 186, 228-230, 233, 257, 357, 360, 365
New Moon, 65, 80, 157, 159-163
Newspapers, 234, 236, 237, 239, 323, 340, 350, 360, 362-364, 366-368, 370, 484
New York Times, 225-239, 339-371

New Zealand, 227, 233, 235-239, 265, 298, 309, 387, 438, 439, 556, 617
Neylan, A.A, 518
NGC 7293 (Helix Nebula), 405
Nice (France), 283
Nihon-Buntoku-Tennô-Jitsuroku, 140
Nihongi, 140-151
Nihon-Kiryaku, 140
Nihon-Kôki, 140
Nihon-Sandai-Jitsuroku, 140
Nihon-shoki, 154
Non-thermal emission, 454, 604
Nova, 142
N-S Solar Grating Array, 422
Nyūk!plainhan, 163
Nyūreki-shintai, 162

0

Objective lens, 276, 281, 319
O'Brien, P.A., 391, 399, 422, 556, 619
Observatories, 80, 244, 253, 284, 295, 322, 349, 616, 621, 622
Observing frequencies, 594, 609
Oda, M., 619
Ohlston, J., 438
Oh Yoonbu, 204
Ollantaytambo (Peru), 87, 89-91
Olsen, B., 266, 318
Onake Kindi Hill, 63, 64
Ondrejev Astronomical Observatory
(Czechoslovakia), 622
Onmō!-ryō, 154
Oort, J.H., 136, 412, 415, 416, 418, 419, 423
Oort's constant, 458
Ophiuchus Complex, 462
Optical astronomers, 604
Orbiting telescopes, 595
Oriental astronomical records, 53-57
Orion, 69, 124, 417, 418, 452-454, 462, 466
Orion Arm, 417, 418
Orion Nebula Cluster, 454
Orion-Taurus-Perseus region, 462
Osaka University (Japan), 619
Osterbrock, D.E, 244-246, 261, 326, 332
Owren, L., 561
Oxford, 129, 130, 138, 283, 295

\mathbf{P}

Pachacuti, 86, 87, 91
Pachamama (Peru), 89, 91

Pacific, 176, 247, 262, 264-266, 280, 323, 326, 350, 361, 363, 364
Padang (Sumatra), 262, 264, 286-290
Paekche Kingdom (Korea), 45, 46, 144, 147, 154
Pallas asteroid family, 175
Paraboloid, 381, 382, 391, 392, 403-405, 408, $412,435,436,444,563$
Parallax, 226, 233, 454
Paris (France), 129, 138
Paris Observatory (France), 368, 620
Parkes Radio Telescope (Australia), 425
Paros (Aegean Sea), 33
Parsons, S.J., 402
Parthasarathy, R., 399, 400, 575, 576, 620
Parties, 227-229, 234-237, 239, 266, 284, 286, 296, 298, 324, 355-358, 360, 363-365, 367, 371, 539, 540
Pasteur, L., 591
Paul Wild Observatory (Australia), 539
Pawsey, J.L, 380, 391, 400, 402, 407, 408, 412, 414, 418-420, 434-437, 482-484, 490, 529, 530, 543, 544, 547, 555-557, 561-564, 571, 575, 590, 591, 593, 594, 596, 598, 601, 603-606, 617, 618
Payne-Scott, R., 380-388, 390, 399, 421, 423, 425, 497, 502, 513, 514, 530, 531, 544, 551, 555, 593, -597, 600, 607, 608, 613, 615, 618, 619
Peking (China), 233
Pencil-beam instrument, 408
Penrith Field Station (Australia), 391, 482, 529, 598, 611
Perigee, 155, 157, 158, 162
Perrine, C.D., 261, 264, 265, 284-287, 289-292, 295, 296, 299, 301, 308, 322
Perseus Arm, 417
Perth Observatory (Australia), 309, 311
Peru, 95
Petzval lens, 250
Phase switched interferometer, 406, 422
Phillips, J.W., 402
Phocaea asteroid family, 175
Photographic Association of the Pacific Coast, 266, 323
Photographic moving plate holder, 229, 230
Photographic telescope, 229, 231, 232, 279, 285
Photography, 229, 244, 250, 257, 268, 283, 285, 291, 299, 302, 303, 306, 319, 323, 331, 339-341, 346, 361, 366, 370
Photoheliograph, 229-231, 277, 341
Photometers, 254-256, 268, 294, 352
Photosphere, 258, 271, 288, 292, 400, 534, 575, 616

Physicists, 177, 185, 245, 247, 330, 365, 539, 547, 590
Pickering, E.C., 327, 328
Pickering, W.H., 258, 269, 357, 358
Pick, M., 620
Piddington, J.H., 390, 393, 394, 400, 402-406, 408-410, 420, 424, 548, 551, 553, 562, 575, 618
Pierson, W.N., 275, 279, 287, 289, 290
Pillars, 62, 75, 85, 104, 109-117
Pisac (Peru), 89-91, 104
Planetary observations, 6, 8, 218
Planetary orbits, 78, 79
Planetesimal hypothesis, 188
Planets, $3,6,54,65,69,73,78,79,140,141$, $148,149,160,178,179,189,190,210$, 211, 218, 243, 260, 291, 299, 302, 303, 306, 307, 313, 341, 350, 352, 354, 359, 363, 366-369, 371, 420
Planisphere, 199-207
Plasma hypothesis, 151, 482, 487, 532, 611, 621
Plasma levels, 390, 482, 501-503, 506, 509, 514-516, 611
Plasma oscillations, 519
Plate-holder, 229, 230, 281, 282, 311
Platforms, 87, 88, 95, 104, 105, 108, 109, $112-114,117,368,370,440$
Pleiades, 90, 92, 94, 116, 203
Polarigraphs, 254-256, 288, 289, 291, 294, 298, 301, 308, 316
Polarization studies, 254, 291, 300, 306, 357, 484
Pondicherry (India), 235
Portrait cameras, 250-251
Positional astronomy, 172, 177, 182
Post-glacial isostatic compensation, 4
'Post-hole Digger,' 557
Potts Hill Field Station (Australia), 379-425, 551-577
Power supplies, 436, 553
Pre-amplifiers, 383, 440
Precession, 65, 70, 75, 123, 127, 203
Press releases, 323
Pre-telescopic period, 3, 4, 22
Price, R., 435
Primary feed, 439, 440, 442
Princeton University (USA), 129, 264, 282
Private collectors, 203
Proceedings of the Royal Society, 593
Proctor, R., 226, 227, 234, 239, 244, 257-260, $340,341,343,345,369,370$

Prominences, 256, 259, 283, 285-287, 289, 291, 294-296, 300, 308, 312, 317, 319-321, 341, 346-348, 350, 352, 354, $357,359,362,364,393,504,536,538$, 553, 609
Proper motions, 178
Pteria (Asia Minor), 31, 35, 36
Ptolemy, 6, 122, 123, 126, 127, 130, 133-137
Public lectures, 239, 371
Pumas, 88, 96-100, 104, 107
Puppis-Vela gas clouds, 466
Purcell, E.M., 402, 412, 543, 561-563
Puschino (Russia), 621
Pyongyang (North Korea), 46, 199
Pyxis-Hydra region, 450-452, 454

Q

Qin Jiushao, 165
Quarterly Bulletin of Solar Activity, 616, 621
Quasars, 598
Quechua, 86-88, 100, 109
Queenstown (New Zealand), 233, 237
Quespiwanka (Peru), 89, 90, 109-114
Qufu (China), 27-29, 31-38, 40, 42
Quiet Sun, 391-402, 423, 481, 556, 575, 576, $580,589,600,609,610,617-620$

R

Radar, 233, 381, 391, 408, 423, 438, 439, 484, 527, 540, 548, 549, 582, 590-592, 594, 595, 603, 605, 617
Radar aerial, 548, 549
Radial velocity, 246, 418, 442, 445, 450, 452-456, 458, 461-464, 466, 469, 472, 517
Radial velocity-distance model, 463
Radio astronomy, 379-425, 433-475, 481-523, 535, 539, 540, 543, 545, 547-583, 589-623
Radio astronomy field stations, 433
Radio brightness distribution, 399, 555, 573, 577
Radio-emitting regions, 607, 617
Radio galaxies, 582
Radioheliograph, 425, 481, 523, 534-536, $538,539,577,589,603,606,617$
Radio interference, 420, 425, 483
Radiophysics Laboratory (Australia), 435, 436, 549, 551, 561, 574, 594, 598
Radiophysics Solar Group (Australia), 482, 523, 535, 580, 623
Radiophysics workshops (Australia), 438

Radio plages, 401, 580, 581, 616
Radio scintillations, 490-491, 590, 600
Radiospectrograph, 482-490, 514, 515, 518, $521-523,527,529,531,534,598,599$, 604, 605, 609, 618-621
'Radio stars,' 438
Rain, 62, 63, 88, 94, 237, 269, 281, 287, 288, 300, 314, 317, 319, 348, 436, 605
Rain-making, 605
Rao, U.V. Gopala, 536
Ratcliffe, J., 603
Raymond, Captain, 237, 238
Rayy (Iran), 122
Réache, M.G., 271
Reber, G., 543, 544, 617
Receivers, 66, 420, 423, 441, 483-485, 487, 527, 594, 595
Recombination lines, 412, 545
Red-shift, 435
Reflecting telescopes, 271, 272, 274, 276, 346, 441
Refracting telescopes, 231, 244
Rekihou to Jihou, 191
Religion, 62, 63, 70, 75, 86
Reptiles, 88
Research Institute of Atmospherics, Nagoya University (Japan), 422
Resisting medium, 171, 188-190, 193
Resolution, 244, 268, 276, 299, 382, 391, 395, 402, 404, 406, 408, 419, 422, 454, 457, 469, 473, 554, 565, 577, 597, 598, 600, 621
Restoration, 172, 191, 211, 215, 216
Reverse drift pairs, 501-503
Reversing layer, 258, 283, 285, 292, 303, 306, 317
Rhombic antennas, 512
Ridge-type scintillation, 493
Rig Veda, 69-71, 75, 76
Rikkokushi, 140
Rituals, 70, 86
Roberts, J., 529, 600
Robinson, B., 414, 434, 490, 623
Rock art, 64, 67-69
Rockbank (Australia), 391, 393, 551, 552
Rocks, 85, 86, 89, 91, 112
Rome (Italy), 283
Ross, A.D., 265, 309, 317
Rotating-lobe interferometer, 597
Rotation curves, 418
Rowe, B., 86, 484, 488, 491, 527-529, 532

Royal Astronomical Society, 176, 266, 280, $331,345,355,356,369,540$
Royal Astronomical Society's Eclipse Committee, 271
Royal Observatory, Cape of Good Hope (South Africa), 236
Royal Radar Establishment (England), 423
Royal Society (England), 226, 369, 540, 593
Rubbings, 201-203, 207
Rue, Warren De La, 244, 257, 341, 355
Rufus, W.C., 200, 203
Russell, H.N., 330, 331
Russia, 129, 185-188, 193, 233, 261, 262, 265, 302-305, 307, 613, 619, 621
Ryle, M., 402, 422, 554, 593, 597, 607, 618

S

Sacsahuaman (Peru), 95, 102
Sagittarius A, 382, 405-406, 408, 420, 424
Sagittarius Arm, 417
Saihuite (Peru), 86, 88, 90, 94
Sakhalin Island (Japan/Russia), 185-188
Salcantay (Peru), 104
Samguk Sagi, 49, 52, 210
Sanctuary of the Island of the Sun (Peru), 88, 112
Sapporo (Japan), 279
Saptarshi calendar, 73, 74
Satellite communication, 613
Satellites, 4, 179, 188, 192, 613
Saturn, 149
Schaeberle 40-foot Eclipse Camera, 275, 323
Schaeberle, J.M., 245, 248, 249, 263, 272-276, 278-280, 323, 327, 329, 330
Schaeberles' Mechanical Theory of the Corona, 245, 323, 329
Schjellerup, H.K.F., 130
Schmidt, M., 416, 463
Schulkin, M., 619
Scientific results, 322, 490, 501, 606-617
Scintillations, 403, 420, 421, 491, 493, 495, 501
Scorpius-Ophiuchus region, 457
Scribal errors, 9, 14, 16, 130, 167
Scutum-Norma Arm, 417, 418
Sea-interferometry, 382, 421, 593-596, 607
Sea-level changes, 5
Seasickness, 280
Seasons, 13, 64, 66-68, 70, 78, 79, 159, 203
Secchi, Fr Angelo, 244, 257, 341

Secular perturbation theories, 172, 181
Seeger, C.L., 620
Sekisan-kōden, 159, 166
Seki Takakazu, 155, 164
Senmyō-reki, 154, 156, 159
Serendipity, 591-596, 609, 613
Seungjeongwon Ilgi, 209-221
Sextans region, 457
Sextant, 275, 276, 302, 305
Shadow bands, 285
Shain, A., 390, 410, 420, 421, 458
Shain Cross, 577, 578, 582
Shane, C.D., 266, 317
Sharpless, S., 412, 564
Shellfish, 88
Sheridan, K., 410, 482, 492, 509, 511, 513, 516, 522, 523, 532, 536, 539, 598, 599, 611, 621
shi, 13, 160
Shibukawa Harumi, 155, 156, 159
Shibukawa Kagesuke, 155
Shilla Kingdom (Korea), 45, 46, 52
Shinzo Shinjo, 22
Shiraz (Iran), 122, 123
Shklovsky, I.S., 424, 561
Shoku-Nihongi, 140
Shoku-Nihon-Kôki, 140
Short duration solar bursts, 383, 600
Short-wave radio fade outs, 387, 556
Shoushi-li, 155
Showakusei, 182
Shrines, 86, 87, 91, 112
Shushu-jiuzhang, 165
SILLIAC, 450, 451
Sillok, 210-213, 215-219
Sinclair, M., 434, 438
Single-frequency observations, 591, 610
Slee, B., 245, 247, 265, 379-425, 481-523, 527-540, 545, 547-583, 589-623
Slotted waveguide array, 424, 619
Slowly-varying component, 399, 400, 575, 580
Small Magellanic Cloud, 415, 424, 472-475
Smerd, S., 392, 395, 397, 483, 515, 517, 518, 536 539, 540, 569, 610, 619, 620, 570609
Smith, F. Graham, 264, 402, 403, 424, 490
Snakes, 48, 108
Solar bursts, 383, 387, 391, 423, 425, 482, 515, 523, 527, 529, 532, 534, 544, 595, 597, 598, 600, 611, 619-623
Solar cycle, 218, 400, 495, 556, 575, 580, 594
Solar eclipse, 5, 21-42, 45-52, 54, 140-142, $144,145,150-151,178,192,193,210$, 243-332, 339-371, 381, 387, 391-395,

401, 421, 424, 548, 551-552, 554, 565, 571, 573, 574, 581, 592, 595, 608, 609, 617-621
Solar flares, 500-501, 504, 509, 536, 597, 613, 618
Solar grating array, 379, 394-401, 422, 425, 554, 556, 557, 559, 560, 565, 568, 570, 575, 600-602
Solar limb, 226, 341, 504, 515, 597, 618
Solar magnetic field, 332
Solar Maximum Mission, 613
Solar Noise Group, 391, 547, 548, 551
Solar noise storms, 618
Solar outbursts, 387, 556
Solar parallax, 226, 233
Solar physics, 329-331, 356, 392, 482, 523, $529,535,580,590,605,611,623$
Solar radio astronomy, 423, 481-523, 539, 545, 548, 551, 589-623
Solar streamers, 294, 330
Solar System, 54, 179, 188, 189, 226, 239
Solar wind, 421, 613
Solstice, 64, 71, 73, 76, 78, 88-94, 96, 98, 99, $101,104,105,109,111,112,114-117$, 157, 160-163
Sôma Diagram, 28, 32-34, 36-38, 40
Source fluctuations, 403
Source size, 422, 595
Southern Hemisphere, 64, 108, 228, 239, 415, 418, 457, 582, 623
South Galactic Pole, 470
Southworth, G.C., 617
Soviet Union, 412, 424, 441, 561, 606
Space weather, 536, 613
Spaniards, 112
Spectrographs, 251-253, 282, 284, 286, 287, 289, 291, 292, 294, 300, 301, 306, 311, 312, 316-318, 321, 328, 330
Spectroheliographs, 400, 555, 575
Spectroscopy, 227, 283, 339, 345, 346, 356, 358-360, 362, 364-366, 369, 370, 484
Spectrum analyser, 482-484, 527, 545, 598
Spiral arms, 412, 416-418, 462, 464, 467, 468, 564, 581
Springs, 85, 87, 263, 266-271, 356, 367, 562
S.S. Swatara, 235-237, 239

Stackpole Brothers, 230, 231
Stairways, 87, 88, 96
Stanford University (USA), 265, 621
Stanier, H.M., 391, 399, 400, 422, 554-556
Stankevitch, K.S., 435
Stanley, G., 380, 402, 434, 435, 438, 439, 483, 551, 562, 594, 605

Star catalogues, 122, 178
Star maps, 122, 131, 199-207
Stars, 3, 4, 6, 10, 11, 13, 49, 51, 55, 62, 63, 65, $67,69,70,74,87,94,121-138,142$, $175,178,179,181,182,184,189-190$, 192-194, 201-203, 205, 211, 212, 218, 219, 243, 246, 247, 261, 272, 296, 307, 312-315, 329, 354, 363, 369, 438, 452-454, 462
Statistical analysis, 134, 181-185, 509
Steinberg, J.-L., 425, 619, 620
Stellar evolution, 189
Stewart, R.T., 391, 423, 481-523, 527-540, 589-623
Sūgaku-jōjo-Arai, 156-159
Strahan (Australia), 551, 552
Strip integration, 572
Strip scans, 424, 580, 616, 619
Struve, O., 257, 341
Sucancas, 96, 98, 99
Suiko era, 142
Suishu, 147
Sullivan, W.T. III, 379, 412, 425, 441, 475, 481, 544, 545, 547, 548, 580, 590-593, 603, 605, 607
Sumatra (Indonesia), 178, 193, 262, 286-290
Summer solstice, 64, 73
Sunjongwon Ilgi, 209-221
Sunrise, 9-13, 21-42, 64-67, 69, 80, 88, $90-94,98,99,101,103,105,106$, $109,110,112,114,116,117,218$, 402, 531
Sunset, 8-13, 21-42, 65, 69, 90, 91, 94, $104,109,117,218,402,539-540$, 551, 552
Sunshine hours, 150
Sunspot areas, 556, 618
Sunspot numbers, 556
Sunspots, 211, 256, 340, 366, 367, 384, 400, 550, 561, 575, 592, 595, 602, 608, 609, 616-618, 621
Supernatural, 62, 91
Supernovae, 54, 65
Supernova remnants, 582
Suzuki, S., 523, 536, 621
Swarup, G., 399, 407, 491, 571, 575, 576, 620, 621
Swasey, A., 265, 308, 315
Swept-frequency interferometer, 482, 491, $492,495,501,509,511,514,515,532$, 533, 604, 611, 615
Swept-phase interferometer, 514
Sydney, 227, 263, 265, 274, 301, 309, 313,

380, 387, 389, 423, 425, 434, 436, 438, 441, 450, 454, 481-483, 490, 527,
529-531, 539, 544, 548, 549, 551, 553,
556, 561, 562, 575, 580-582, 589, 594,
595, 598, 600, 602, 603, 605-607, 616-618, 623
Sydney Water Board, 380
Synchrotron emission, 408, 424, 518
Synodic month, 159, 161

T

Takebe, Katahiro, 153-168
Takahashi Yoshitoki, 155
Takakura, T., 619
Tanaka, H., 425, 619, 621
Tandberg-Hassen, E., 399, 422, 556
Tang Dynasty (China), 147, 159
Tasimeter, 26, 357, 365-367, 370
Tasmania (Australia), 228, 237, 391, 394, 474, 551, 553
Taurus, 69, 123, 452, 563
Taurus A, 405, 408
Telegraph, 264, 267, 285, 287, 311, 322
Telescope, 80, 81, 182, 185, 229-232, 244-246, 248, 250, 251, 267-274, 276, 279, 285, 287, 288, 303, 305, $308,312,317,323,328,346,348$, $350,352,358,360,366,381,382$, 385, 408, 421, 424, 481, 483, 500, 523, 534, 565, 577, 580-583, 595, 604, 605, 617, 623
Telescope-maker, 323, 350
Tello, J., 87
Temperature changes, 556, 557
Temperature control, 443
Temple architecture, 75
Temple of Pachacamac (Peru), 86
Tenmu era, 142, 147, 148
Tennant, J.F. (Major-General), 259, 260, 345-348
Tenpō-reki calendar, 155
Terao, Hisashi, 172
Terraces, 95, 107, 111, 113
Thasos (Aegean Sea), 31, 33-35, 38, 41, 42
The Hague (The Netherlands), 620
Themis asteroid family, $174,175,181$
The Observatory, 356, 412, 450, 564
Theon of Alexandria, 13
Theoretical astronomy, 178, 192
Thermal emission, 408, 556, 604
Thomas, A.B., 402, 403, 494
Thomaston (Georgia, USA), 262, 264, 284-286
Thrones, 95, 105

Thule asteroid group, 180
tian, 13
Tianjing-huowen, 155
Tides, 4, 5, 309, 313
Tigers, 47, 50
Time, $5,6,9-11,14,15,22,23,26,32,36,46$, 56, 62-66, 69, 70, 72, 76, 78-80, 86, $92,96,101,105,108,109,111,122$, $123,129,130,136,141-143,145-150$, 154-163, 165, 172-176, 182, 189, 191, 200, 203, 204, 206, 216, 218, 219, 226, 234-239, 246-250, 253, 258, 260-262, 266-268, 272-274, 276-281, 283, 285, 289, 292, 300, 303-308, 311, 315, 317, $322,323,328,329,331,332,339-341$, $346,348,352,354,358,359,362,363$, 365, 368, 369, 371, 380, 381, 390-392, 395, 400-402, 407, 411, 416-418, 420-425, 434, 436-438, 441-443, 445, 447, 449, 450, 458, 468, 472, 482, 483, 485, 487, 489-493, 495, 498, 501-503, 506, 507, 509, 512, 513, 515, 518, 520, 527, 530-532, 535, 536, 543, 545, 548, 551, 553, 554, 557, 559, 561-563, 575, 577, 580, 581, 583, 593, 594, 598, 600, $604,605,607,611,615,616,619,621$, 623
Time-keeping, 154
Time signals, 266, 267, 278, 281, 285, 306, 311, 317, 322
Timing, $4,6,8-14,16,18,19,226,317,356$, 388, 421, 591-595
Tipon (Peru), 89
Tirepegur, X., 277
Tiwanaku, 88
Todd, D.P., 233
Tokyo Astronomical Observatory (Japan), 172, 176-179, 182, 183, 185, 190, 193, 619
Tokyo Imperial University (Japan), 172, 176-179, 185, 193, 194
Tomography, 572
Tongkuk Munheon Bigo, 212
Toolangi Magnetic Observatory, 390
Topa Inca, 86, 91
Toshio Watanabe, 23, 26, 28, 35, 40
Totality, 6, 8-10, 12, 13, 15, 248, 259-261, 266, 268, 272, 273, 278, 283, 285, 286, 288-290, 292, 300-302, 306, 308, 309, $311,316,317,319,322,328,331,345$, 348-350, 352-355, 357, 359-361, 365, 366, 370
Toyokawa (Japan), 619, 621
TPS-3 antennas, 548
Traité de Mécanique Céleste, 178

Transistors, 605
Transit of Venus, 225-239, 302
Transit of Venus Commission, 229
Transit radio telescope, 424
Transmission lines, 492, 495, 512, 558, 559, 570
Treharne, R.F., 380
Trent, G.H., 408-410, 420, 523, 532, 621
Trojan asteroid group, 173, 180
Tropical year, 159-162
Trumpler, R., 265, 309, 311, 313, 329
Tsunami, 141
Tulse Hill (England), 283
Tumuli, 45-49
Turner, H.H., 271, 295, 364
Type I solar bursts, $384,499,501,506-508$, 529, 530, 619, 621
Type II solar bursts, 385, 482, 486-490, 497, 499, 501, 504-509, 515, 517-521, 529-532, 534, 536, 611-613, 615, 619, 621
Type III solar bursts, 482, 486-488, 497, 499-502, 506, 515, 517-519, 523, 529-533, 611-613, 619, 621
Type IV solar emission, 509
Type V solar bursts, 518-520, 621

\mathbf{U}

Ultraviolet, 595
Ulugh Bēg, 123, 125
Underworld, 96, 101, 108
United States Navy, 297, 315, 317
Universe, 61-63, 71-74, 76, 435
Universitats Sternwarte (Kiel), 622
University of California (USA), 244, 246, 265, 266, 271, 274, 297, 305
University of Colorado (USA), 621
University of Melbourne (Australia), 265, 316, 548, 572, 573
University of Michigan (USA), 620
University of Oslo (Norway), 621
University of Sydney (Australia), 450, 481, 548, 549, 580-582, 589, 605, 616
University of Western Sydney (Australia), 582, 583
Ursa Minor, 123, 125-127, 131, 132, 135
URSI Congress (1952), 490
Urubamba (Peru), 85, 90-92, 94-96, 109-114, 116, 117
USA, 129, 176, 178, 188, 192, 225-239, 245, 262-271, 284-286, 296, 297, 304-308, 313, 316-322, 339-371, 401, 420, 422-424, 441, 543, 605
U.S. Naval Observatory (USNO), 179, 193, 228, 233, 244, 245, 250, 265, 271, 285, 287, 296, 297, 305, 322, $350,354,355,358,360,364$

V

Van Allen belts, 613
Variable baseline interferometry, 618-620
Variable stars, 175, 189, 190, 192
Vedanga Jyotisa, 70
Vedic astronomy, 70-76
Venus, 65, 149, 211, 225-239, 260, 302, 341
Vilcashuman, 88, 90
Viracocha, 87, 101
Virgo A, 405
Vitkevich, V.V., 619
Vladivostok, 228, 233
Volcanic eruptions, 141
Volunteers, 228, 262-268, 275, 276, 278, 280-284, 286, 287, 290, 295, 305, 322, 324, 326
Vonberg, D.D., 422, 597, 607, 618
V2 rocket, 595
Vulcan, 253, 254, 260, 288, 289, 291, 292, 294, 296, 302, 303, 367-369, 371

W

Wade, C.M., 410, 411
Walker, R.A., 263, 277, 278
Wallal (Western Australia), 262, 265, 308-314, 324, 329
Warburton, J., 396-402, 422, 437, 440, 557, 559, 560, 567-575
Wasan, 155, 156, 168
Water, 71, 74, 75, 86-91, 94, 95, 100, 104, $109,112,116,154,268-270,311,323$, 380, 384, 436, 443
Water channels, 87, 89-91, 94, 95, 104, 116
Water clocks, 154
'Water reservoir' telescope, 268-270, 384
Water supply reservoir, 380
Watheroo Magnetic Observatory (Australia), 557
Wave-meter, 438
Weather, 54, 55, 62, 141, 144, 148, 150, 237, 239, 261, 267, 283, 290, 291, 303-305, $314,317,339,350,358,359,361,364$, 365, 367, 420, 436, 536, 569, 603, 613
Weather records, 54, 55, 141, 144, 148, 150
Weaving, 88
Weishu, 147
Weiss, A., 514-516, 518-521, 536, 539,

612, 615
Wenxian Tongkao, 212
Westerhout, G., 410, 416, 418, 419, 450, 458, 463, 467
Western astronomy, 155, 172
Westfold, K., 380, 408, 502, 504, 515, 544
West, R., 265, 295, 366
White, Sir Frederick, 623
Wild, P., 391, 412, 470, 471, 481-484, 490, 512, 527-540, 543-545, 589, 598
Willard lens, 250
Williams Bay, 283
Wind, 63, 231, 247, 276, 281, 363, 421, 474, 490, 613
Winlock, J., 229, 350-352, 360, 363
Winter solstice, 64, 73, 105, 157, 160-163
Women, 88, 89, 151, 244, 309, 324-326, 358, 368
Wood, H., 539
World War I, 303
World War II, 561
Wright, W.H., 244, 265, 266, 288, 314-316, 320, 329, 357
Würzburg antenna, 442
WWII searchlight mirrors, 387, 393
WWV, 443, 445

X

X-ray crystallography, 573
X-rays, 548, 595, 613
Xu Ang, 159
Xuanming-li, 154-156, 158-160

Y
Yabsley, D., 391, 400, 402, 548, 550, 551, 553, 555, 556, 575, 607, 618, 619
Yabuuchi Kiyoshi, 191
Yagi antenna, 421, 594, 597
Yajur Veda, 70, 73
Yale University (USA), 179, 193, 316
Yang Hui, 164
Yanghui-suanfa, 164
Yezo Island (Japan), 279
Yi Dynasty (China), 211, 215
Yonsei University Library, 204, 205
Yoshida Mitsuyoshi, 155, 156
Young, C.A., 248, 257-260, 328, 340-342, 354, 365, 368, 370
Young, C.W., 621
Yuan Dynasty (China), 155
yuga, 71, 78-80

Z

Zeeman effect, 505
zenith telescope, 182, 185
Zhanguo Period, 22, 23
Zhelezniakov, V.V., 515
zhis, 160
zigzag channels, 88, 100
$Z \bar{l} j, 123$
ziqpu stars, 10-12
Ziwei Yuan Tianyi, 219, 220
Zodiac, 69, 78, 123, 125
zodiacal constellations, 65
Zuoshi-zhuan, 22, 23, 25, 26
Z-term in latitude variation, 172, 176, 184-185

