An ecosystem-scale predictive model of coastal seagrass distribution

Grech, A., and Coles, R.G. (2010) An ecosystem-scale predictive model of coastal seagrass distribution. Aquatic Conservation: marine and freshwater ecosystems , 20 (4). pp. 437-444.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1002/aqc.1107
 
57
1


Abstract

1. Maintaining ecological processes that underpin the functioning of marine ecosystems requires planning and management of marine resources at an appropriate spatial scale.

2. The Great Barrier Reef World Heritage Area (GBR) is the world’s largest World Heritage Area (approximately 348000km2) and second largest marine protected area. It is difficult to inform the planning and management of marine ecosystems at that scale because of the high cost associated with collecting data. To address this and to inform the management of coastal (approximately 15m below mean sea level) habitats at the scale of the GBR, this study determined the presence and distribution of seagrass by generating a Geographic Information System (GIS)-based habitat suitability model.

3. A Bayesian belief network was used to quantify the relationship (dependencies) between seagrass and eight environmental drivers: relative wave exposure, bathymetry, spatial extent of flood plumes, season, substrate, region, tidal range and sea surface temperature. The analysis showed at the scale of the entire coastal GBR that the main drivers of seagrass presence were tidal range and relative wave exposure. Outputs of the model include probabilistic GIS-surfaces of seagrass habitat suitability in two seasons and at a planning unit of cell size 2kmX2km.

4. The habitat suitability maps developed in this study extend along the entire GBR coast, and can inform the management of coastal seagrasses at an ecosystem scale. The predictive modelling approach addresses the problems associated with delineating habitats at the scale appropriate for the management of ecosystems and the cost of collecting field data.

Item ID: 14877
Item Type: Article (Research - C1)
ISSN: 1099-0755
Keywords: seagrass; predictive modelling; ecosystem-scales; Geographic Information Systems; Great Barrier Reef World Heritage Area
Date Deposited: 07 Nov 2010 22:51
FoR Codes: 05 ENVIRONMENTAL SCIENCES > 0501 Ecological Applications > 050199 Ecological Applications not elsewhere classified @ 50%
05 ENVIRONMENTAL SCIENCES > 0502 Environmental Science and Management > 050205 Environmental Management @ 50%
SEO Codes: 96 ENVIRONMENT > 9605 Ecosystem Assessment and Management > 960506 Ecosystem Assessment and Management of Fresh, Ground and Surface Water Environments @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page